Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.049
Filtrar
1.
Trials ; 25(1): 254, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605413

RESUMO

BACKGROUND AND PURPOSE: Research to date has lacked definitive evidence to determine whether mirror therapy promotes the recovery of upper extremity function after stroke. Considering that previous studies did not stratify patients based on structural retention, this may be one of the reasons for the negative results obtained in many trials. The goal evaluates the efficacy of TBMT (utilizing an innovatively designed mirror) versus standard occupational therapy for stroke patient's upper limb functionality. METHODS AND ANALYSIS: This single-center randomized controlled trial will involve 50 patients with stroke. All patients will be randomly assigned to either the task-based mirror therapy or the control group. The interventions will be performed 5 days per week for 4 weeks. The primary outcomes will be the mean change in scores on both the FMA-UE and modified Barthel Index (MBI) from baseline to 4 weeks intervention and at 12 weeks follow-up between the two groups and within groups. The other outcomes will include the Action Research Arm Test (ARAT), the Nine Hole Peg Test (9HPT), the Functional Independence Measure, and MRI. DISCUSSION: This trial will not only to establish that task-based mirror therapy (TBMT) could improve the recovery of hand function after stroke but also to explore the underlying mechanisms. We expect that this finding will clarify the brain activation and brain network mechanisms underlying the improvement of hand function with task-oriented mirror therapy and lead to new ideas for stroke hand function rehabilitation. TRIAL REGISTRATION: URL: https://www.chictr.org.cn ; Unique identifier: ChiCTR2300068855. Registered on March 1, 2023.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Terapia de Espelho de Movimento , Hemiplegia/diagnóstico , Hemiplegia/etiologia , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/terapia , Extremidade Superior , Reabilitação do Acidente Vascular Cerebral/métodos , Resultado do Tratamento , Ensaios Clínicos Controlados Aleatórios como Assunto
2.
PLoS One ; 19(4): e0302008, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38603768

RESUMO

Malnutrition after stroke may lessen the beneficial effects of rehabilitation on motor recovery through influences on both brain and skeletal muscle. Enriched rehabilitation (ER), a combination of environmental enrichment and forelimb reaching practice, is used preclinically to study recovery of skilled reaching after stroke. However, the chronic food restriction typically used to motivate engagement in reaching practice is a barrier to using ER to investigate interactions between nutritional status and rehabilitation. Thus, our objectives were to determine if a modified ER program comprised of environmental enrichment and skilled reaching practice motivated by a short fast would enhance post-stroke forelimb motor recovery and preserve forelimb muscle size and metabolic fiber type, relative to a group exposed to stroke without ER. At one week after photothrombotic cortical stroke, male, Sprague-Dawley rats were assigned to modified ER or standard care for 2 weeks. Forelimb recovery was assessed in the Montoya staircase and cylinder task before stroke and on days 5-6, 22-23, and 33-34 after stroke. ER failed to improve forelimb function in either task (p > 0.05). Atrophy of extensor digitorum communis (EDC) and triceps brachii long head (TBL) muscles was not evident in the stroke-targeted forelimb on day 35, but the area occupied by hybrid fibers was increased in the EDC muscle (p = 0.038). ER bilaterally increased EDC (p = 0.046), but not TBL, muscle size; EDC muscle fiber type was unchanged by ER. While the modified ER did not promote forelimb motor recovery, it does appear to have utility for studying the role of skeletal muscle plasticity in post-stroke recovery.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Ratos , Masculino , Animais , Humanos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/fisiologia , Membro Anterior , Músculo Esquelético , Modelos Animais de Doenças
3.
Neurorehabil Neural Repair ; 38(3): 187-196, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38425047

RESUMO

BACKGROUND: Caloric restriction promotes neuroplasticity and recovery after neurological injury. In mice, we tested the hypothesis that caloric restriction can act post-stroke to enhance training-associated motor recovery. METHODS: Mice were trained to perform a skilled prehension task. We then induced a photothrombotic stroke in the caudal forelimb area, after which we retrained animals on the prehension task following an 8-day delay. Mice underwent either ad libitum feeding or alternate day fasting beginning 1-day after stroke and persisting for either 7 days or the entire post-stroke training period until sacrifice. RESULTS: Prior studies have shown that post-stroke recovery of prehension can occur if animals receive rehabilitative training during an early sensitive period but is incomplete if rehabilitative training is delayed. In contrast, we show complete recovery of prehension, despite a delay in rehabilitative training, when mice underwent alternate day fasting beginning 1-day post-stroke and persisting for either 7 days or the entire post-stroke training period until sacrifice. Recovery was independent of weight loss. Stroke volumes were similar across groups. CONCLUSIONS: Post-stroke caloric restriction led to recovery of motor function independent of a protective effect on stroke volume. Prehension recovery improved even after ad libitum feeding was reinstituted suggesting that the observed motor recovery was not merely a motivational response. These data add to the growing evidence that post-stroke caloric restriction can enhance recovery.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Camundongos , Animais , Membro Anterior , Extremidade Superior , Recuperação de Função Fisiológica/fisiologia , Jejum , Modelos Animais de Doenças
4.
Hand Clin ; 40(2): 259-267, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38553097

RESUMO

Traumatic brachial plexus injury is the most common indication for functional free muscle transfer, and elbow flexion recovery is the functional target, followed by shoulder stability and hand reanimation. In this article, we provide a literature review of functional free muscle transfer (FFMT) for adult traumatic brachial plexus injuries and the surgical technical recommendations to achieve the best functional results with FFMT for adult traumatic brachial plexus injuries.


Assuntos
Neuropatias do Plexo Braquial , Plexo Braquial , Articulação do Cotovelo , Transferência de Nervo , Adulto , Humanos , Neuropatias do Plexo Braquial/cirurgia , Articulação do Cotovelo/cirurgia , Amplitude de Movimento Articular/fisiologia , Recuperação de Função Fisiológica/fisiologia , Plexo Braquial/cirurgia , Plexo Braquial/lesões , Músculos , Transferência de Nervo/métodos , Resultado do Tratamento
5.
Cell Mol Life Sci ; 81(1): 137, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478109

RESUMO

Improving the function of the blood-spinal cord barrier (BSCB) benefits the functional recovery of mice following spinal cord injury (SCI). The death of endothelial cells and disruption of the BSCB at the injury site contribute to secondary damage, and the ubiquitin-proteasome system is involved in regulating protein function. However, little is known about the regulation of deubiquitinated enzymes in endothelial cells and their effect on BSCB function after SCI. We observed that Sox17 is predominantly localized in endothelial cells and is significantly upregulated after SCI and in LPS-treated brain microvascular endothelial cells. In vitro Sox17 knockdown attenuated endothelial cell proliferation, migration, and tube formation, while in vivo Sox17 knockdown inhibited endothelial regeneration and barrier recovery, leading to poor functional recovery after SCI. Conversely, in vivo overexpression of Sox17 promoted angiogenesis and functional recovery after injury. Additionally, immunoprecipitation-mass spectrometry revealed the interaction between the deubiquitinase UCHL1 and Sox17, which stabilized Sox17 and influenced angiogenesis and BSCB repair following injury. By generating UCHL1 conditional knockout mice and conducting rescue experiments, we further validated that the deubiquitinase UCHL1 promotes angiogenesis and restoration of BSCB function after injury by stabilizing Sox17. Collectively, our findings present a novel therapeutic target for treating SCI by revealing a potential mechanism for endothelial cell regeneration and BSCB repair after SCI.


Assuntos
Células Endoteliais , Traumatismos da Medula Espinal , Animais , Camundongos , Ratos , 60489 , Barreira Hematoencefálica/metabolismo , Enzimas Desubiquitinantes/metabolismo , Células Endoteliais/metabolismo , Proteínas HMGB/metabolismo , Proteínas HMGB/farmacologia , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/fisiologia , Fatores de Transcrição SOXF/genética , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
6.
Phys Med Rehabil Clin N Am ; 35(2): 235-257, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38514216

RESUMO

Stroke remains a leading cause of disability. Motor recovery requires the interaction of top-down and bottom-up mechanisms, which reinforce each other. Injury to the brain initiates a biphasic neuroimmune process, which opens a window for spontaneous recovery during which the brain is particularly sensitive to activity. Physical activity during this sensitive period can lead to rapid recovery by potentiating anti-inflammatory and neuroplastic processes. On the other hand, lack of physical activity can lead to early closure of the sensitive period and downstream changes in muscles, such as sarcopenia, muscle stiffness, and reduced cardiovascular capacity, and blood flow that impede recovery.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Recuperação de Função Fisiológica/fisiologia , Encéfalo , Exercício Físico
7.
BMC Neurosci ; 25(1): 20, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528450

RESUMO

INTRODUCTION: The optimum time to mobilise (standing, walking) following spinal cord injury (SCI) is unknown but may have implications for patient outcomes. There are no high-quality experimental studies that examine this issue, with a paucity of guidance for clinicians. Pre-clinical studies lead research in this field and can contribute to knowledge and support future clinical practice. OBJECTIVE: to evaluate the effect of early compared to no mobilisation on pathophysiological and functional outcomes in animals with induced SCI. METHODS: A systematic review with meta-analysis was conducted by searching pre-clinical literature in MEDLINE (PubMed), Embase (Ovid), Web of Science, OpenGrey, and EThOS (June 2023). Studies were included of any research method giving numerical results comparing pathophysiological and functional outcomes in rats and mice mobilised within 14-days of induced SCI to those that did not mobilise. Data were synthesised using random-effects meta-analyses. The quality of the evidence was assessed using the CAMARADES checklist. The certainty of findings was reported using the GRADE approach. This study is registered on PROSPERO (CRD42023437494). RESULTS: Seventeen studies met the inclusion criteria. Outcomes found that Brain Derived Neurotrophic Factor levels were greater in those that initiated mobilisation within 14-days of SCI compared to the groups that did not. Mobilisation initiated within 14-days of SCI was also associated with statistically significant functional gains: (Basso, Beattie and Bresnahan locomotor rating score (BBB) = 2.13(0-21), CI 1.43, 2.84, Ladder Rung Walking Task = - 12.38(0-100), CI 20.01, - 4.76). Meta-analysis identified the greatest functional gains when mobilisation was initiated within 3 days of SCI (BBB = 3.00, CI 2.31-3.69, p < 0.001), or when delivered at low intensity (BBB = 2.88, CI 2.03-3.70, p < 0.001). Confidence in the findings from this review was low to moderate due to the risk of bias and mixed methodological quality. CONCLUSION: Mobilisation instigated within 14-days of injury, may be an effective way of improving functional outcomes in animal models following SCI, with delays potentially detrimental to recovery. Outcomes from this study support further research in this field to guide future clinical practice.


Assuntos
Deambulação Precoce , Traumatismos da Medula Espinal , Humanos , Ratos , Camundongos , Animais , Recuperação de Função Fisiológica/fisiologia , Modelos Animais de Doenças , Medula Espinal
8.
Sensors (Basel) ; 24(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38400263

RESUMO

Stroke represents a medical emergency and can lead to the development of movement disorders such as abnormal muscle tone, limited range of motion, or abnormalities in coordination and balance. In order to help stroke patients recover as soon as possible, rehabilitation training methods employ various movement modes such as ordinary movements and joint reactions to induce active reactions in the limbs and gradually restore normal functions. Rehabilitation effect evaluation can help physicians understand the rehabilitation needs of different patients, determine effective treatment methods and strategies, and improve treatment efficiency. In order to achieve real-time and accuracy of action detection, this article uses Mediapipe's action detection algorithm and proposes a model based on MPL-CNN. Mediapipe can be used to identify key point features of the patient's upper limbs and simultaneously identify key point features of the hand. In order to detect the effect of rehabilitation training for upper limb movement disorders, LSTM and CNN are combined to form a new LSTM-CNN model, which is used to identify the action features of upper limb rehabilitation training extracted by Medipipe. The MPL-CNN model can effectively identify the accuracy of rehabilitation movements during upper limb rehabilitation training for stroke patients. In order to ensure the scientific validity and unified standards of rehabilitation training movements, this article employs the postures in the Fugl-Meyer Upper Limb Rehabilitation Training Functional Assessment Form (FMA) and establishes an FMA upper limb rehabilitation data set for experimental verification. Experimental results show that in each stage of the Fugl-Meyer upper limb rehabilitation training evaluation effect detection, the MPL-CNN-based method's recognition accuracy of upper limb rehabilitation training actions reached 95%. At the same time, the average accuracy rate of various upper limb rehabilitation training actions reaches 97.54%. This shows that the model is highly robust across different action categories and proves that the MPL-CNN model is an effective and feasible solution. This method based on MPL-CNN can provide a high-precision detection method for the evaluation of rehabilitation effects of upper limb movement disorders after stroke, helping clinicians in evaluating the patient's rehabilitation progress and adjusting the rehabilitation plan based on the evaluation results. This will help improve the personalization and precision of rehabilitation treatment and promote patient recovery.


Assuntos
Transtornos dos Movimentos , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Extremidade Superior/fisiologia , Mãos , Movimento/fisiologia , Resultado do Tratamento , Recuperação de Função Fisiológica/fisiologia , Receptores de Trombopoetina
9.
Stem Cell Reports ; 19(3): 383-398, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38366597

RESUMO

The transplantation of neural stem/progenitor cells (NS/PCs) derived from human induced pluripotent stem cells (hiPSCs) has shown promise in spinal cord injury (SCI) model animals. Establishing a functional synaptic connection between the transplanted and host neurons is crucial for motor function recovery. To boost therapeutic outcomes, we developed an ex vivo gene therapy aimed at promoting synapse formation by expressing the synthetic excitatory synapse organizer CPTX in hiPSC-NS/PCs. Using an immunocompromised transgenic rat model of SCI, we evaluated the effects of transplanting CPTX-expressing hiPSC-NS/PCs using histological and functional analyses. Our findings revealed a significant increase in excitatory synapse formation at the transplantation site. Retrograde monosynaptic tracing indicated extensive integration of transplanted neurons into the surrounding neuronal tracts facilitated by CPTX. Consequently, locomotion and spinal cord conduction significantly improved. Thus, ex vivo gene therapy targeting synapse formation holds promise for future clinical applications and offers potential benefits to individuals with SCI.


Assuntos
Células-Tronco Pluripotentes Induzidas , Traumatismos da Medula Espinal , Humanos , Ratos , Animais , Células-Tronco Pluripotentes Induzidas/patologia , Diferenciação Celular/genética , Transplante de Células-Tronco , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/patologia , Medula Espinal , Terapia Genética , Recuperação de Função Fisiológica/fisiologia
10.
Brain Inj ; 38(5): 337-340, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38308526

RESUMO

BACKGROUND: In rare cases, zolpidem administration has been found to paradoxically improve cognition in patients with brain injury in disorders of consciousness. CASE PRESENTATION: Two minimally conscious plus (MCS+) patients at baseline, a 24-year-old woman 8 weeks post-traumatic brain injury (TBI) and 23-year-old man 6 weeks post-TBI, demonstrated behavioral improvements after off-label, single-dose administration of 10 mg of zolpidem. DISCUSSION/CONCLUSION: The patients demonstrated improved cognition on Coma Recovery Scale-Revised assessment after ingesting zolpidem. In particular, speech was substantially restored as one patient recovered functional communication and both demonstrated intelligible verbalizations for the first-time post-injuries following zolpidem. Overall, evidence is limited regarding the underlying mechanisms of various cognitive improvements in zolpidem response although studies incorporating neuroimaging are promising. The outcomes and similarities between these cases contribute to the current literature and highlight the need for rigorous studies in the future to guide zolpidem trials in patient care for those with DOC.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Encefalopatia Traumática Crônica , Masculino , Feminino , Humanos , Adulto Jovem , Adulto , Zolpidem , Fala , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas/complicações , Lesões Encefálicas/tratamento farmacológico , Estado Vegetativo Persistente/tratamento farmacológico , Estado Vegetativo Persistente/etiologia , Transtornos da Consciência/tratamento farmacológico , Transtornos da Consciência/etiologia , Encefalopatia Traumática Crônica/complicações , Recuperação de Função Fisiológica/fisiologia
11.
Neurorehabil Neural Repair ; 38(3): 214-228, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38385458

RESUMO

BACKGROUND: Anodal transcranial direct current stimulation (AtDCS), a neuromodulatory technique, has been applied to treat traumatic brain injury (TBI) in patients and was reported to promote functional improvement. We evaluated the effect of contralesional AtDCS on axonal sprouting of the intact corticospinal tract (CST) and the underlying mechanism in a TBI mouse model to provide more preclinical evidence for the use of AtDCS to treat TBI. METHODS: TBI was induced in mice by a contusion device. Then, the mice were subjected to contralesional AtDCS 5 days per week followed by a 2-day interval for 7 weeks. After AtDCS, motor function was evaluated by the irregular ladder walking, narrow beam walking, and open field tests. CST sprouting was assessed by anterograde and retrograde labeling of corticospinal neurons (CSNs), and the effect of AtDCS was further validated by pharmacogenetic inhibition of axonal sprouting using clozapine-N-oxide (CNO). RESULTS: TBI resulted in damage to the ipsilesional cortex, while the contralesional CST remained intact. AtDCS improved the skilled motor functions of the impaired hindlimb in TBI mice by promoting CST axon sprouting, specifically from the intact hemicord to the denervated hemicord. Furthermore, electrical stimulation of CSNs significantly increased the excitability of neurons and thus activated the mechanistic target of rapamycin (mTOR) pathway. CONCLUSIONS: Contralesional AtDCS improved skilled motor following TBI, partly by promoting axonal sprouting through increased neuronal activity and thus activation of the mTOR pathway.


Assuntos
Lesões Encefálicas Traumáticas , Estimulação Transcraniana por Corrente Contínua , Humanos , Camundongos , Animais , Tratos Piramidais , Neurônios , Serina-Treonina Quinases TOR/metabolismo , Recuperação de Função Fisiológica/fisiologia
12.
Brain Behav ; 14(1): e3370, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38376018

RESUMO

We report a review of Pubmed (Medline), CENTRAL, Web of Science, and Scopus to test the effectiveness of the combined application of repetitive transcranial magnetic stimulation and transcranial direct current stimulation in the improvement of different functional variables of the upper limb in people with stroke. Two independent reviewers assessed eligibility and evaluated the quality of the studies. Five articles were included in the final review according to the inclusion criteria: Most show statistically significant differences in motor function improvement in favor of the experimental group, but not in activity. Due to the heterogeneity of the observed studies, the results should be interpreted with caution-more high-quality studies are needed to investigate the effectiveness of these interventions in different stages of stroke patients.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Humanos , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/terapia , Estimulação Magnética Transcraniana/métodos , Extremidade Superior , Encéfalo
13.
Neurorehabil Neural Repair ; 38(4): 268-278, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38357884

RESUMO

BACKGROUND: Preconditioning with cathodal high-definition transcranial direct current stimulation (HD-tDCS) can potentiate cortical plasticity induced by intermittent theta burst stimulation (iTBS) and enhance the after-effects of iTBS in healthy people. However, it is unclear whether this multi-modal protocol can enhance upper limb function in patients with stroke. OBJECTIVE: The aim of this study was to investigate whether priming iTBS with cathodal HD-tDCS over the ipsilesional M1 can augment upper limb motor recovery in poststroke patients. METHODS: A total of 66 patients with subacute stroke were randomly allocated into 3 groups. Group 1 received priming iTBS with HD-tDCS (referred to as the tDCS + iTBS group), Group 2 received non-priming iTBS (the iTBS group), and Group 3 received sham stimulation applied to the ipsilesional M1. One session was performed per day, 5 days per week, for 3 consecutive weeks. In Group 1, iTBS was preceded by a 20-minute session of cathodal HD-tDCS at a 10-minute interval. The primary outcome measure was the Fugl-Meyer Assessment-Upper Extremity (FMA-UE) score. Moreover, the secondary outcome measures for muscle strength and spasticity were the Motricity Index-Upper Extremity (MI-UE) and the Modified Ashworth Scale Upper-Extremity (MAS-UE), respectively, and the Hong Kong Version of the Functional Test for the Hemiplegic Upper Extremity (FTHUE-HK) and the Modified Barthel Index (MBI) for activity and participation. RESULTS: Significant differences were detected in the changes in FMA-UE, MI-UE, and MBI scores between the 3 groups from baseline to post-intervention (χ2FMA-UE = 10.856, P = .004; χ2MI-UE = 6.783, P = .034; χ2MBI = 9.608, P = .008). Post hoc comparisons revealed that the priming iTBS group demonstrated substantial improvements in FMA-UE (P = .004), MI-UE (P = .028), and MBI (P = 0.006) compared with those in the sham group. However, no significant difference was observed between the iTBS group and the sham group. Moreover, no significant differences were found in the changes in MAS-UE or FTHUE-HK between the groups. CONCLUSIONS: Priming iTBS with HD-tDCS over the ipsilesional M1 cortex had beneficial effects on augmenting upper limb motor recovery and enhancing daily participation among subacute stroke patients.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação Magnética Transcraniana/métodos , Reabilitação do Acidente Vascular Cerebral/métodos , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Extremidade Superior
14.
J Neurosci ; 44(6)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326029

RESUMO

Toll-like receptors (TLRs) play an important role in the innate immune response after CNS injury. Although TLR4 is one of the best characterized, its role in chronic stages after spinal cord injury (SCI) is not well understood. We examined the role of TLR4 signaling in injury-induced responses at 1 d, 7 d, and 8 weeks after spinal cord contusion injury in adult female TLR4 null and wild-type mice. Analyses include secondary damage, a range of transcriptome and protein analyses of inflammatory, cell death, and extracellular matrix (ECM) molecules, as well as immune cell infiltration and changes in axonal sprouting and locomotor recovery. Lack of TLR4 signaling results in reduced neuronal and myelin loss, reduced activation of NFκB, and decreased expression of inflammatory cytokines and necroptotic cell death pathway at a late time point (8 weeks) after injury. TLR4 null mice also showed reduction of scar-related ECM molecules at 8 weeks after SCI, accompanied by increase in ECM molecules associated with perineuronal nets, increased sprouting of serotonergic fibers, and improved locomotor recovery. These findings reveal novel effects of TLR4 signaling in chronic SCI. We show that TLR4 influences inflammation, cell death, and ECM deposition at late-stage post-injury when secondary injury processes are normally considered to be over. This highlights the potential for late-stage targeting of TLR4 as a potential therapy for chronic SCI.


Assuntos
Citocinas , Traumatismos da Medula Espinal , Camundongos , Feminino , Animais , Citocinas/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Neurônios/metabolismo , Inflamação/metabolismo , Camundongos Knockout , Medula Espinal/metabolismo , Recuperação de Função Fisiológica/fisiologia
15.
Muscle Nerve ; 69(4): 490-497, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38328996

RESUMO

INTRODUCTION/AIMS: Daily intramuscular injections of fibroblast growth factor 2 (FGF2) but not of brain-derived neurotrophic factor (BDNF) significantly improve whisking behavior and mono-innervation of the rat levator labii superioris (LLS) muscle 56 days after buccal nerve transection and suture (buccal-buccal anastomosis, BBA). We explored the dose-response of BDNF, FGF2, and insulin growth factor 2 (IGF2) on the same parameters, asking whether higher doses of BDNF would promote recovery. METHODS: After BBA, growth factors were injected (30 µL volume) daily into the LLS muscle over 14, 28, or 56 days. At 56 days, video-based motion analysis of vibrissal whisking was performed and the extent of mono- and poly-reinnervation of the reinnervated neuromuscular junctions (NMJs) of the muscle determined with immunostaining of the nerve with ß-tubulin and histochemical staining of the endplates with Alexa Fluor 488-conjugated α-bungarotoxin. RESULTS: The dose-response curve demonstrated significantly higher whisking amplitudes and corresponding increased mono-innervation of the NMJ in the reinnervated LLS muscle at concentrations of 20-30 µg/mL BDNF administered daily for 14-28 days after BBA surgery. In contrast, high doses of IGF2 and FGF2, or doses of 20 and 40 µg/mL of BDNF administered for 14-56 days had no effect on either whisking behavior or in reducing poly-reinnervation of endplates in the muscle. DISCUSSION: These data suggest that the re-establishment of mono-innervation of whiskerpad muscles and the improved motor function by injections of BDNF into the paralyzed vibrissal musculature after facial nerve injury have translation potential and promote clinical application.


Assuntos
Traumatismos do Nervo Facial , Ratos , Animais , Traumatismos do Nervo Facial/tratamento farmacológico , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Injeções Intramusculares , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/uso terapêutico , Junção Neuromuscular , Regeneração Nervosa/fisiologia , Recuperação de Função Fisiológica/fisiologia , Nervo Facial
16.
Cell Transplant ; 33: 9636897241233040, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38400732

RESUMO

Spinal cord injury (SCI) severely affects the quality of life and autonomy of patients, and effective treatments are currently lacking. Autophagy, an essential cellular metabolic process, plays a crucial role in neuroprotection and repair after SCI. Glycoprotein non-metastatic melanoma protein B (GPNMB) has been shown to promote neural regeneration and synapse reconstruction, potentially through the facilitation of autophagy. However, the specific role of GPNMB in autophagy after SCI is still unclear. In this study, we utilized the spinal cord transection method to establish SCI rats model and overexpressed GPNMB using adenoviral vectors. We assessed tissue damage using hematoxylin and eosin (H&E) and Nissl staining, and observed cell apoptosis using TUNEL staining. We evaluated the inflammatory response by measuring inflammatory factors using enzyme-linked immunosorbent assay (ELISA). In addition, we measured reactive oxygen species (ROS) levels using 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA), and assessed oxidative stress levels by measuring malondialdehyde (MDA) and glutathione (GSH) using ELISA. To evaluate autophagy levels, we performed immunofluorescence staining for the autophagy marker Beclin-1 and conducted Western blot analysis for autophagy-related proteins. We also assessed limb recovery through functional evaluation. Meanwhile, we induced cell injury using lipopolysaccharide (LPS) and added an autophagy inhibitor to verify the impact of GPNMB on SCI through autophagy modulation. The results demonstrated that GPNMB alleviated the inflammatory response, reduced oxidative stress levels, inhibited cell apoptosis, and promoted autophagy following SCI. Inhibiting autophagy reversed the effects of GPNMB. These findings suggest that GPNMB promotes neural injury repair after SCI, potentially through attenuating the inflammatory response, reducing oxidative stress, and inhibiting cell apoptosis.


Assuntos
Melanoma , Receptores Fc , Traumatismos da Medula Espinal , Animais , Humanos , Ratos , Apoptose , Autofagia , Glutationa/metabolismo , Glicoproteínas/farmacologia , Melanoma/metabolismo , Melanoma/patologia , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/farmacologia , Qualidade de Vida , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/fisiologia , Medula Espinal/patologia , Traumatismos da Medula Espinal/patologia
17.
BMJ Open ; 14(2): e077442, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38355178

RESUMO

INTRODUCTION: There is growing evidence that sleep is disrupted after stroke, with worse sleep relating to poorer motor outcomes. It is also widely acknowledged that consolidation of motor learning, a critical component of poststroke recovery, is sleep-dependent. However, whether the relationship between disrupted sleep and poor outcomes after stroke is related to direct interference of sleep-dependent motor consolidation processes, is currently unknown. Therefore, the aim of the present study is to understand whether measures of motor consolidation mediate the relationship between sleep and clinical motor outcomes post stroke. METHODS AND ANALYSIS: We will conduct a longitudinal observational study of up to 150 participants diagnosed with stroke affecting the upper limb. Participants will be recruited and assessed within 7 days of their stroke and followed up at approximately 1 and 6 months. The primary objective of the study is to determine whether sleep in the subacute phase of recovery explains the variability in upper limb motor outcomes after stroke (over and above predicted recovery potential from the Predict Recovery Potential algorithm) and whether this relationship is dependent on consolidation of motor learning. We will also test whether motor consolidation mediates the relationship between sleep and whole-body clinical motor outcomes, whether motor consolidation is associated with specific electrophysiological sleep signals and sleep alterations during subacute recovery. ETHICS AND DISSEMINATION: This trial has received both Health Research Authority, Health and Care Research Wales and National Research Ethics Service approval (IRAS: 304135; REC: 22/LO/0353). The results of this trial will help to enhance our understanding of the role of sleep in recovery of motor function after stroke and will be disseminated via presentations at scientific conferences, peer-reviewed publication, public engagement events, stakeholder organisations and other forms of media where appropriate. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov: NCT05746260, registered on 27 February 2023.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Estudos Longitudinais , Recuperação de Função Fisiológica/fisiologia , Sono , Acidente Vascular Cerebral/complicações , Reabilitação do Acidente Vascular Cerebral/métodos , Extremidade Superior
18.
Neurosurg Rev ; 47(1): 87, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38369598

RESUMO

The efficacy of growth factor gene-modified stem cells in treating spinal cord injury (SCI) remains unclear. This study aims to evaluate the effectiveness of growth factor gene-modified stem cells in restoring motor function after SCI. Two reviewers searched four databases, including PubMed, Embase, Web of Science, and Scopus, to identify relevant records. Studies on rodents assessing the efficacy of transplanting growth factor gene-modified stem cells in restoring motor function after SCI were included. The results were reported using the standardized mean difference (SMD) with a 95% confidence interval (95% CI). Analyses showed that growth factor gene-modified stem cell transplantation improved motor function recovery in rodents with SCI compared to the untreated (SMD = 3.98, 95% CI 3.26-4.70, I2 = 86.8%, P < 0.0001) and stem cell (SMD = 2.53, 95% CI 1.93-3.13, I2 = 86.9%, P < 0.0001) groups. Using growth factor gene-modified neural stem/histone cells enhanced treatment efficacy. In addition, the effectiveness increased when viral vectors were employed for gene modification and high transplantation doses were administered during the subacute phase. Stem cells derived from the human umbilical cord exhibited an advantage in motor function recovery. However, the transplantation of growth factor gene-modified stem cells did not significantly improve motor function in male rodents (P = 0.136). Transplantation of growth factor gene-modified stem cells improved motor function in rodents after SCI, but claims of enhanced efficacy should be approached with caution. The safety of gene modification remains a significant concern, requiring additional efforts to enhance its clinical translatability.


Assuntos
Roedores , Traumatismos da Medula Espinal , Animais , Masculino , Humanos , Traumatismos da Medula Espinal/terapia , Recuperação de Função Fisiológica/fisiologia , Células-Tronco/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Medula Espinal
19.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396902

RESUMO

A spinal cord injury (SCI) causes changes in brain structure and brain function due to the direct effects of nerve damage, secondary mechanisms, and long-term effects of the injury, such as paralysis and neuropathic pain (NP). Recovery takes place over weeks to months, which is a time frame well beyond the duration of spinal shock and is the phase in which the spinal cord remains unstimulated below the level of injury and is associated with adaptations occurring throughout the nervous system, often referred to as neuronal plasticity. Such changes occur at different anatomical sites and also at different physiological and molecular biological levels. This review aims to investigate brain plasticity in patients with SCIs and its influence on the rehabilitation process. Studies were identified from an online search of the PubMed, Web of Science, and Scopus databases. Studies published between 2013 and 2023 were selected. This review has been registered on OSF under (n) 9QP45. We found that neuroplasticity can affect the sensory-motor network, and different protocols or rehabilitation interventions can activate this process in different ways. Exercise rehabilitation training in humans with SCIs can elicit white matter plasticity in the form of increased myelin water content. This review has demonstrated that SCI patients may experience plastic changes either spontaneously or as a result of specific neurorehabilitation training, which may lead to positive outcomes in functional recovery. Clinical and experimental evidence convincingly displays that plasticity occurs in the adult CNS through a variety of events following traumatic or non-traumatic SCI. Furthermore, efficacy-based, pharmacological, and genetic approaches, alone or in combination, are increasingly effective in promoting plasticity.


Assuntos
Traumatismos da Medula Espinal , Humanos , Medula Espinal , Encéfalo , Plasticidade Neuronal/fisiologia , Recuperação de Função Fisiológica/fisiologia
20.
CNS Neurosci Ther ; 30(2): e14585, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38421133

RESUMO

INTRODUCTION: Serum response factor (SRF) is important in muscle development, tissue repair, and neuronal regulation. OBJECTIVES: This research aims to thoroughly examine the effects of SRF on spinal cord injury (SCI) and its ability to significantly impact the recovery and regeneration of neuronal axons. METHODS: The researchers created rat models of SCI and scratch injury to primary spinal cord neurons to observe the expression of relevant factors after neuronal injury. RESULTS: We found that the SRF, Ras, Raf, and cofilin levels increased after injury and gradually returned to normal levels. Afterward, researchers gave rats with SCI an SRF inhibitor (CCG1423) and studied the effects with nuclear magnetic resonance and transmission electron microscopy. The SRF inhibitor rodents had worse spinal cord recovery and axon regrowth than the control group. And the apoptosis of primary neurons after scratch injury was significantly higher in the SRF inhibitor group. Additionally, the researchers utilized lentiviral transfection to modify the SRF expression in neurons. SRF overexpression increased neuron migration while silencing SRF decreased it. Finally, Western blotting and RT-PCR were conducted to examine the expression changes of related factors upon altering SRF expression. The results revealed SRF overexpression increased Ras, Raf, and cofilin expression. Silencing SRF decreased Ras, Raf, and Cofilin expression. CONCLUSION: Based on our research, the SRF promotes axonal regeneration by activating the "Ras-Raf-Cofilin" signaling pathway.


Assuntos
Fatores de Despolimerização de Actina , Traumatismos da Medula Espinal , Ratos , Animais , Fatores de Despolimerização de Actina/metabolismo , Fatores de Despolimerização de Actina/farmacologia , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Fator de Resposta Sérica/farmacologia , Traumatismos da Medula Espinal/patologia , Neurônios/metabolismo , Axônios , Medula Espinal/metabolismo , Transdução de Sinais , Regeneração Nervosa , Recuperação de Função Fisiológica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...